Characterization of an AM404 Analogue, N-(3-Hydroxyphenyl)arachidonoylamide, as a Substrate and Inactivator of Prostaglandin Endoperoxide Synthase†

نویسندگان

  • Melissa V. Turman
  • Philip J. Kingsley
  • Lawrence J. Marnett
چکیده

N-(4-Hydroxyphenyl)arachidonoylamide (AM404) is an inhibitor of endocannabinoid inactivation that has been used in cellular and animal studies. AM404 is a derivative of arachidonic acid and has been reported to inhibit arachidonate oxygenation by prostaglandin endoperoxide synthase-1 and -2 (PGHS-1 and -2, respectively). While examining the structural requirements for inhibition of PGHS, we discovered that the meta isomer of AM404, N-(3-hydroxyphenyl)arachidonoylamide (3-HPAA), is a substrate for purified PGHS. PGHS-2 efficiently oxygenated 3-HPAA to prostaglandin and hydroxyeicosatetraenoate products. No oxidation of the phenolamide moiety was observed. 3-HPAA appeared to be converted by PGHS-1 in a similar manner; however, conversion was less efficient than that by PGHS-2. PGHS-2 was selectively, dose-dependently, and irreversibly inactivated in the presence of 3-HPAA. Complete inactivation of PGHS-2 was achieved with 10 muM 3-HPAA. Preliminary characterization revealed that 3-HPAA inactivation did not result from covalent modification of PGHS-2 or damage to the heme moiety. These studies provide additional insight into the structural requirements for substrate metabolism and inactivation of PGHS and report the first metabolism-dependent, selective inactivator of PGHS-2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New analgesics synthetically derived from the paracetamol metabolite N-(4-hydroxyphenyl)-(5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-enamide.

N-(4-hydroxyphenyl)-(5Z,8Z,11Z,14Z)-icosatetra-5,8,11,14-enamide (AM404) is a metabolite of the well-known analgesic paracetamol. AM404 inhibits endocannabinoid cellular uptake, binds weakly to CB1 and CB2 cannabinoid receptors, and is formed by fatty acid amide hydrolase (FAAH) in vivo. We prepared three derivatives of this new (endo)cannabinoid using bioisosteric replacement (1), homology (2)...

متن کامل

Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system.

Acetaminophen (paracetamol) is a popular domestic analgesic and antipyretic agent with a weak anti-inflammatory action and a low incidence of adverse effects as compared with aspirin and other non-steroidal anti-inflammatory drugs. Here we show that acetaminophen, following deacetylation to its primary amine, is conjugated with arachidonic acid in the brain and the spinal cord to form the poten...

متن کامل

Paracetamol (Acetaminophen): mechanisms of action.

Paracetamol has a central analgesic effect that is mediated through activation of descending serotonergic pathways. Debate exists about its primary site of action, which may be inhibition of prostaglandin (PG) synthesis or through an active metabolite influencing cannabinoid receptors. Prostaglandin H(2) synthetase (PGHS) is the enzyme responsible for metabolism of arachidonic acid to the unsta...

متن کامل

A cyclobutanone analogue mimics penicillin in binding to isopenicillin N synthase.

A carbocyclic analogue of the beta-lactam antibiotic isopenicillin N (IPN) has been synthesised and cocrystallised with isopenicillin N synthase (IPNS), the central enzyme in the biosynthesis of penicillin antibiotics. The crystal structure of the IPNS-cyclobutanone complex reveals an active site environment similar to that seen in the enzyme-product complex generated by turnover of the natural...

متن کامل

Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide].

The endocannabinoid system may serve important functions in the central and peripheral regulation of pain. In the present study, we investigated the effects of the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] on rodent models of acute and persistent nociception (intraplantar formalin injection in the mouse), neuropathic pain (sciatic nerve ligati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2009